Salut badr,
a+b+c=pi==>a/2+b/2+c/2=pi/2
REMARQUE: sin(c/2)=sin([pi-(a+b)]/2)=cos([a+b]/2)>0
donc
sin(a/2).sin(b/2).sin(c/2)=sin(a/2).sin(b/2).cos([a+b]/2)
sin(a/2).sin(b/2).cos([a+b]/2)={[sin(b+a/2)-sin(a/2)]sin(a/2)}/2
on a sin(b+a/2)≤1 ==> sin(b+a/2)-sin(a/2)≤1-sin(a/2)
==>{[sin(b+a/2)-sin(a/2)]sin(a/2)}/2 ≤ (1-sin(a/2))sin(a/2)/2
on a qqsoit 0<t<1 , t(1-t)≤1/4
alors on deduit (1-sin(a/2))sin(a/2)/2 ≤ 1/8
donc sin(a/2)sin(b/2)sin(c/2)≤1/8
je chercherai un exo et je le posterai