Forum Des Pro Matheux
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.

Forum Des Pro Matheux

En mathématiques, on ne comprend pas les choses, on s'y habitue.
 
AccueilPortailRechercherDernières imagesS'enregistrerConnexion

 

 jolie-inegalité

Aller en bas 
3 participants
AuteurMessage
Bolzano
Taupin niveau pro
Taupin niveau pro
Bolzano


Nombre de messages : 143
Age : 36
Localisation : NuLle PaRt
Date d'inscription : 26/11/2006

Feuille de personnage
texte:
Nom complet:

jolie-inegalité Empty
MessageSujet: jolie-inegalité   jolie-inegalité Icon_minitimeVen 6 Juil - 9:57

soient a, b et c trois réels strictement positifs, montrer que :
1/(a(a+b)) +1/(b(b+c))+1/(c(c+a))>= 27/(2(a+b+c)²)
Revenir en haut Aller en bas
Riemann
Modérateurs
Modérateurs
Riemann


Nombre de messages : 195
Age : 35
Localisation : binary heaven
Date d'inscription : 30/06/2007

Feuille de personnage
texte:
Nom complet:

jolie-inegalité Empty
MessageSujet: Re: jolie-inegalité   jolie-inegalité Icon_minitimeVen 6 Juil - 12:03

on peut la faire on utilisant MA-MG en 3 temps

la premiere fois on l 'apllique directemenyt sur
1/a(a+b) +1/b(b+c) +1/a(a+c) >=3(1/abc(a+b)(b+c)(a+c))^1/3 (*)

la seconde fois sur a+b+c >=3(abc)^1/3 ==>1/a+b+c <=1/3(abc)^1/3

et la derniere fois sur
(a+b)+(b+c)+(c+a)>=3((a+b)(b+c)(c+a))^1/3

d ou
3/(2(a+b+c)) <=1/((a+b)(b+c)(a+c))^1/3

ainsi
1/((a+b)(b+c)(a+c))^1/3 * (abc)^1/3 >=9/(2(a+b+c)^2)

et en remplacant ds (*)
1/a(a+b) +1/b(b+c) +1/a(a+c) >=27/(2(a+b+c)^2)
Revenir en haut Aller en bas
Sinchy
Modérateurs
Modérateurs
Sinchy


Nombre de messages : 365
Age : 37
Localisation : my house
Date d'inscription : 16/11/2006

Feuille de personnage
texte:
Nom complet: mohammed

jolie-inegalité Empty
MessageSujet: Re: jolie-inegalité   jolie-inegalité Icon_minitimeVen 6 Juil - 12:26

Bravo Riemann , [color=black]3 fois [color:71a7=#000000:71a7]MA-MG
Revenir en haut Aller en bas
Contenu sponsorisé





jolie-inegalité Empty
MessageSujet: Re: jolie-inegalité   jolie-inegalité Icon_minitime

Revenir en haut Aller en bas
 
jolie-inegalité
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» jolie -inegalite
» Inégalité 12
» Inégalité 3
» Inégalite 13
» Inégalité 10

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum Des Pro Matheux :: Olympiade :: Inégalité-
Sauter vers: