Forum Des Pro Matheux En mathématiques, on ne comprend pas les choses, on s'y habitue. |
|
| « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? | |
| | Auteur | Message |
---|
Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:30 | |
| L'infini
« 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? 15, 16, 17, 18, 19, …et après ? 20, 21, 22, 23, …et après ? »
C’est bien la question récurrente que nous pose un enfant qui apprend à compter : « …et après ? » Et après ... les nombres 24, 25, 26 ... 100, 200, … se suivent pour être dépassés par des plus grands (millions, milliards, …) qui voient à leur tour s’échapper très loin devant eux de très grands nombres (centillions, googol, googolplex, …), suite qui continue sa course effrénée vers on ne sait où… Et pourtant on lui attribue un nom : l’infini... Mon petit frère qui atrois ans maintenant, m'a invité à bien réfléchir un moment pour pouvoir répondre à sa question d'une façon simple pour ne pas nuir à ses notions, sa question était "t'es "grande" ma soeur!! alors dis moi quel est le dernier nombre où on s'arrete de compter" une question si simple pour une notion mathématique des plus abstraites qui ne paraît pas si simple à définir et dont on peut même remettre en doute l'existence. L’infini ne nous est pas accessible et ne fait pas partie du monde réel. Aristote (-384 ; -322) parlait d’un infini potentiel au sens d’une éventualité utopique impossible à réaliser. Alors qu’est ce qu'un infini ? Car il en existe plusieurs, nous le verrons ensuite. Le plus simple serait de le définir comme tout ce qui n’est pas fini. Par exemple, les diviseurs de 12 sont en nombre fini (1, 2, 3, 4, 6 et 12), par contre ses multiples sont en nombre infini (12, 24, 36, …). | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:35 | |
| Dans ce cas, il n’est pas étonnant d’entendre souvent que l’univers est infini. Comment pourrait-on concevoir qu’il soit fini. Et pourtant les physiciens s’opposent majoritairement à cette idée. Citons l’astrophysicien Christian Magnan:
« L'infini est une notion mathématique qui n'a pas d'équivalent dans le monde physique. Soutenir que notre Univers serait « infini » est absurde car cela ne signifie rien en réalité. Toute théorie physique implique des nombres, en tant que tels forcément répartis sur un intervalle fini. Par conséquent un univers infini, situé hors du domaine de la mesure, s'exclut ipso facto du cadre de la physique. » Alors si même l’univers n’est pas infini, où peut-on trouver l’infini ? Nulle part, semblerait-il ! Et comme l’écrit Christian Magnan, on ne peut lui attribuer qu’un statut mathématique. Voilà quelques ressemblances avec le zéro longtemps nié et refusé car lui non plus ne trouvait pas de représentation dans le monde réel. D’autant plus que ces deux faux jumeaux sont mathématiquement liés, puisqu’en divisant le fini par zéro, on obtient l’infini. Prenons un exemple : divisons 32 (le fini) par 0. Obtenons-nous, l’infini ? Pas vraiment ! La calculatrice affiche «MA error» qui signifie «Mathematical error». La division par zéro est interdite en mathématiques. Essayons alors d’approcher le résultat, en choisissant des valeurs de plus en plus proches de zéro : 32 : 0,1 = 320 32 : 0,01 = 3200 32 : 0,001 = 32000 … 32 : 0,000 000 001 = 32 000 000 000 L’expérience semble concluante, plus le diviseur se rapproche de zéro et plus le quotient grandit pour tendre vers l'infini! | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:42 | |
| Les premières approches sur le sujet datent du VIème siècle avant J.C. et ne traitent pas encore de l’infiniment grand mais de l’infiniment petit. La découverte de l’irrationalité de , que les pythagoriciens ont tenté de cacher, en est le point de départ. Par la diagonale d’un carré de côté 1, les savants grecs découvrent une longueur inexprimable, , dont nous savons aujourd’hui que son écriture comporte un nombre infini de décimales apparaissant de façon totalement aléatoire. Plus troublant encore, le nombre Pi qui fascine les mathématiciens depuis près de 4000 ans. En ce moment même de gigantesques ordinateurs calculent les décimales les plus éloignées et tentent de battre les records qui se succèdent sans connaître de limite. | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:45 | |
| Au Vème siècle avant J.C., le grec Zénon d’Elée propose les premiers paradoxes de l’infini (je vais essayer de poster touts les différents paradoxes de Zénon et leurs principesplutards dans un autre sujet). Exposons-en un : A priori la somme d’un nombre infini de longueurs est une longueur infinie. Zénon nous exprime qu’il peut en être autrement : Achille, célèbre pour sa rapidité, court à vitesse constante sur une longueur de 1km (précisons que le km n’existait pas encore à l’époque). Achille doit d’abord parcourir la moitié de la longueur (1/2) puis la moitié de la longueur restante (1/4) et ainsi de suite en poursuivant le processus de division à l’infini. La longueur totale sera ainsi égale à 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + ... En effectuant les premiers termes de cette série de nombres, on s’aperçoit que plus on ajoute de termes, plus on se rapproche de 1. Voilà une somme infinie de longueurs dont le résultat est fini et égal à 1 !
Dernière édition par le Mar 31 Juil - 3:48, édité 1 fois | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:48 | |
| Mais au IVème siècle avant J.C., Aristote expose les problèmes de Zénon et réfute tous les paradoxes en opposant l’infini en acte qui peut être atteint (celui de Zénon) à l’infini potentiel qui n’est pas réalisable. Au IIIème siècle avant J.C., Archimède de Syracuse propose la méthode dite des anciens qui sera la base du calcul infinitésimal (calcul avec l’infiniment petit). C’est à partir du XIIIème siècle que les savants d’Occident prennent le relais et exposent puis développent les théories du passé. Citons l’anglais Robert Grosseteste, le français Pierre de Fermat ou le belge Grégoire de Saint-Vincent qui rebaptise la méthode des anciens en « la méthode d’exhaustion ». Le français Blaise Pascal participe aussi à l’essor du calcul infinitésimal et donne une approche plus théologique de l’infini. Il écrit au sujet de l’infiniment petit et l’infiniment grand : « …ces extrémités se touchent et se réunissent à force de s'être éloignées, et se retrouvent en Dieu et en Dieu seulement. » En 1665, l’anglais John Wallis introduit pour la première fois dans son ouvrage "Arithmetica Infinitorum" le symbole pour désigner l'infini. Il est hérité des romains qui l’utilisaient pour désigner "1000". Au XVIIème siècle Isaac Newton et Gottfried Wilhelm von Leibniz généralisent et propagent le calcul infinitésimal qui devient une branche indépendante des mathématiques possédant ses propres règles | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:51 | |
| Mais c’est au XIXème siècle avec le russe Georg Cantor que l’infini prend réellement son envol !!! Son apport est considérable. Il baptise o, qui se lit "aleph 0", l’infini des nombres entiers ou l'infini dénombrable (que l'on peut compter ou numéroter à l'aide des entiers naturels). Par exemple, les ensembles IN, et possèdent un nombre infini d'éléments d'ordre o. Ce qui n'est pas le cas de IR, l'ensemble des nombres réels. 1 est l'infini des points se trouvant sur une portion de courbe (le continu), puis vient 2, 3, ... Il propose d’autres infinis qu’il distingue et essaie de comparer. Mais un infini peut-il être plus grand qu’un autre ? Existe-t-il des infinis équivalents ? Pour comprendre, considérons l’ensemble des entiers positifs et celui de leur carré. A chaque entier, il est possible d’associer son carré (1 à 1, 2 à 4, 3 à 9, …). Donc si à chaque élément de l’un, il est possible d’associer un élément de l’autre et réciproquement, ces deux ensembles ont la même taille et pourtant l’ensemble des entiers contient celui de leur carré ! Ces deux infinis sont équivalents et le paradoxe qu’ils présentent explique pourquoi de nombreux savants réfutaient l’infini en acte. Cette notion rejoint la pensée du savant de Bagdad Abu al Hassan Thabit Ibn Qurra qui soutenait qu'un infini ne peut être plus grand qu'un autre. Illustrons encore cette idée par le paradoxe de l’hôtel infini, proposé par David Hilbert dans les années 20 : Imaginons un hôtel qui comprend une infinité de chambres toutes occupées. Le paradoxe est le suivant : s’il arrive subitement une infinité de nouveaux clients, l’hôtel pourra tous les loger ! L’astuce consiste à déplacer les anciens occupants : celui de la chambre 1 passe dans la chambre 2, celui de la chambre 2 passe dans la chambre 4, celui de la chambre 3 passe dans la chambre 6, celui de la chambre 4 passe dans la chambre 8 et ainsi de suite de façon à ce que les anciens occupants n’occupent que des chambres à numéro pair. Ainsi les nouveaux arrivants n’auront plus qu’à se loger dans les chambres à numéro impair qui sont en nombre infini ! Allons encore plus loin… Car s’il existe des infinis équivalents, leur nombre est en quantité infinie. Il s’agit là d’un infini d’ordre deux (les infinis d’ensembles infinis). Et nous ne nous arrêtons pas en si bon chemin. Nous pouvons concevoir l’infini d’ordre 3, il suffit de prendre une infinité d’infinis d’ordre 2. Alors pourquoi ne pas continuer ? Et nous continuons avec les infinis d’ordre 4, puis 5, puis …d’ordre infini bien sûr ! Suite d’ensembles qui sont en nombre infini et l’on peut poursuivre ainsi jusqu’à l’infini… | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:54 | |
| Plus tard l'allemand Kurt Gödel répondra à la grande interrogation de Cantor appelée le Paradoxe du continu.Est-il possible de concevoir un infini entre deux infinis d’ordre successif ? Existe-t-il par exemple un infini compris entre celui de IN et celui de IR ? Question délirante à laquelle Cantor ne trouva jamais de réponse. S'en suivit une grave dépression nerveuse qui le fit abandonner les mathématiques pour se consacrer à la théologie et la philosophie. Finalement Gödel prouvera qu’on ne peut pas répondre à cette question puisque la proposition est aussi bien vraie que fausse. On dit qu’elle est indécidable ! | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 3:56 | |
| <BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px">
<BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px"></BLOCKQUOTE></BLOCKQUOTE> | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 4:08 | |
| si on pose x=0.99999.... 10 x = 9, 9999… 10 x – x = 9,9999… – x9 x = 9,9999… – 0,9999… 9 x = 9 x = 1 d'où 1=0.9999.... Etes vous vraiment convaincus?!!! C'est ça la question | |
| | | Bolzano Taupin niveau pro
Nombre de messages : 143 Age : 36 Localisation : NuLle PaRt Date d'inscription : 26/11/2006
Feuille de personnage texte: Nom complet:
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 4:13 | |
| - Meridien a écrit:
- Mais c’est au XIXème siècle avec le russe Georg Cantor que l’infini prend réellement son envol !!! Son apport est considérable. Il baptise o, qui se lit "aleph 0", l’infini des nombres entiers ou l'infini dénombrable (que l'on peut compter ou numéroter à l'aide des entiers naturels). Par exemple, les ensembles IN, et possèdent un nombre infini d'éléments d'ordre o. Ce qui n'est pas le cas de IR, l'ensemble des nombres réels.
1 est l'infini des points se trouvant sur une portion de courbe (le continu), puis vient 2, 3, ... Il propose d’autres infinis qu’il distingue et essaie de comparer.
Merci c tré bien, utile, tu vien d'eclaircir Une notion assez profonde ( que meme moi j avai aucune idée sur ça ), mais le passage que je vien de te citer est assez compliqué qnd peut le comprendre avec ce nombre limité de ligne ( que tu vien de nous citer ) alors je me deman,de si tu peux ( ou bien qlq un d'autre ) bien explique | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 4:26 | |
| pas de quoi, c'est mon devoir de partager mes infos, et ça m'enchante bien que ça vous interesse. et pour ta question, c'est le principe de la dérivation, t'es en spé et je crois que t'as déjà des capacités pour imaginé ce trucs là, il s'agit d'un peu d'imagination et de notions de base, utilise aussi la densité de Q par raport à IR. J'espère que j'ai éclaircis les choses davantages (car des fois je ne fais que les compliquer )
Dernière édition par le Mar 31 Juil - 4:38, édité 1 fois | |
| | | Bolzano Taupin niveau pro
Nombre de messages : 143 Age : 36 Localisation : NuLle PaRt Date d'inscription : 26/11/2006
Feuille de personnage texte: Nom complet:
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 4:28 | |
| la densité de Q par rapport à R car y a ps de densité de R vers N ou de R vers Z | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 4:37 | |
| chui vraiment dsl c'st ce ke i mean , ché po ce ki m a pris j étais po concentré, alors chui encore une fois désolée, et merci de m'avoir signaler cette impardenable faute:oops: | |
| | | Lisaetoile Taupin niveau Débutant
Nombre de messages : 63 Age : 36 Localisation : Maisola Date d'inscription : 17/11/2006
Feuille de personnage texte: Nom complet:
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 10:16 | |
| - Meridien a écrit:
<BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px">
<BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px"></BLOCKQUOTE></BLOCKQUOTE> sa signifie coi ? des code pour le msdos | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Mar 31 Juil - 11:38 | |
| dsl c'est une faute. car la plupart de mes msg ne sont pas ecris normalement, j'utilise quelques languages | |
| | | Meridien Modérateurs
Nombre de messages : 124 Age : 35 Localisation : black_hole Date d'inscription : 23/07/2007
Feuille de personnage texte: Nom complet: Saloua
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? Dim 5 Aoû - 12:13 | |
| chui vraiment étonnée pour le fait que l'infini ne vous passionne pas tellement que moi chers matheux, j'ai cru que vos réactions seront plus riches d'un efaçon à trop en parler de ce petit truc d'infini.je sais bien que c'est pas trop suffisant ce que je vennais de poster mais à vous de l'enrichir. | |
| | | Contenu sponsorisé
| Sujet: Re: « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? | |
| |
| | | | « 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …et après ? | |
|
Sujets similaires | |
|
| Permission de ce forum: | Vous ne pouvez pas répondre aux sujets dans ce forum
| |
| |
| |
|