slt
on pose : a=1/x ; b=1/y ; c=1/z
on a xyz=1 , et la somme E devient :
E = x²/(y+z) + y²/(x+z) + z²/(x+y)
or on a :
(y+z +x+z +x+y)E =
rac(y+z)²+rac(x+z)²+rac(x+y)²)*((x/(y+z))²+(y/(x+z))² +(z/(x+y)²)>=
(xx+y+z)² inégalité de Cauchi Choirtz.
donc E>=(x+y+z)/2 = 3/2*(x+y+z)/3 >= 3/2*(xyz)^1/3 =3/2
CQFD.